MathDB
Prove that the limit is 2 - [Iran Second Round 1989]

Source:

December 6, 2010
limitinductionalgebra proposedalgebra

Problem Statement

Let {an}n1\{a_n\}_{n \geq 1} be a sequence in which a1=1a_1=1 and a2=2a_2=2 and an+1=1+a1a2a3an1+(a1a2a3an1)2n2.a_{n+1}=1+a_1a_2a_3 \cdots a_{n-1}+(a_1a_2a_3 \cdots a_{n-1} )^2 \qquad \forall n \geq 2. Prove that limn(1a1+1a2+1a3++1an)=2\lim_{n \to \infty} \biggl( \frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots + \frac{1}{a_n} \biggr) =2