China South East Mathematical Olympiad 2021 Grade11 P2
Source:
July 28, 2021
number theoryprime numbers
Problem Statement
Let p≥5 be a prime number, and set M={1,2,⋯,p−1}. Define T={(n,xn):p∣nxn−1andn,xn∈M}. If ∑(n,xn)∈Tn[pnxn]≡k(modp), with 0≤k≤p−1, where [α] denotes the largest integer that does not exceed α, determine the value of k.