MathDB
existence of increasing sequences

Source: France 1993 P2

May 12, 2021
number theorySequences

Problem Statement

Let nn be a given positive integer.
(a) Do there exist 2n+12n+1 consecutive positive integers a0,a1,,a2na_0,a_1,\ldots,a_{2n} in the ascending order such that a0+a1++an=an+1++a2na_0+a_1+\ldots+a_n=a_{n+1}+\ldots+a_{2n}? (b) Do there exist consecutive positive integers a0,a+1,,a2na_0,a+1,\ldots,a_{2n} in ascending order such that a02+a12++an2=an+12++a2n2a_0^2+a_1^2+\ldots+a_n^2=a_{n+1}^2+\ldots+a_{2n}^2? (c) Do there exist consecutive positive integers a0,a1,,a2na_0,a_1,\ldots,a_{2n} in ascending order such that a03+a13++an3=an+13++a2n3a_0^3+a_1^3+\ldots+a_n^3=a_{n+1}^3+\ldots+a_{2n}^3?
[hide=Official Hint]You may study the function f(x)=(xn)3++x3(x+1)3(x+n)3f(x)=(x-n)^3+\ldots+x^3-(x+1)^3-\ldots-(x+n)^3 and prove that the equation f(x)=0f(x)=0 has a unique solution xnx_n with 3n(n+1)<xn<3n(n+1)+13n(n+1)<x_n<3n(n+1)+1. You may use the identity 13+23++n3=n2(n+1)221^3+2^3+\ldots+n^3=\frac{n^2(n+1)^2}2.