MathDB
2023 China TST Problem 4

Source: 2023 China TST Problem 4

March 14, 2023
number theoryChina TST

Problem Statement

Given m,nN+,m,n\in\mathbb N_+, define S(m,n)={(a,b)N+21am,1bn,gcd(a,b)=1}.S(m,n)=\left\{(a,b)\in\mathbb N_+^2\mid 1\leq a\leq m,1\leq b\leq n,\gcd (a,b)=1\right\}. Prove that: for d,rN+,\forall d,r\in\mathbb N_+, there exists m,nN+,m,ndm,n\in\mathbb N_+,m,n\geq d and S(m,n)r(modd).\left|S(m,n)\right|\equiv r\pmod d.