MathDB
Vertical sides in hexagonal parallelogram

Source: Tuymaada 2014, Day 1, Problem 2 Juniors, Problem 4 Seniors

July 12, 2014
geometryparallelograminductioncombinatorics unsolvedcombinatoricsTuymaada

Problem Statement

A k×k\times \ell 'parallelogram' is drawn on a paper with hexagonal cells (it consists of kk horizontal rows of \ell cells each). In this parallelogram a set of non-intersecting sides of hexagons is chosen; it divides all the vertices into pairs.
Juniors) How many vertical sides can there be in this set? Seniors) How many ways are there to do that?
[asy] size(120); defaultpen(linewidth(0.8)); path hex = dir(30)--dir(90)--dir(150)--dir(210)--dir(270)--dir(330)--cycle; for(int i=0;i<=3;i=i+1) { for(int j=0;j<=2;j=j+1) { real shiftx=j*sqrt(3)/2+i*sqrt(3),shifty=j*3/2; draw(shift(shiftx,shifty)*hex); } } [/asy] (T. Doslic)