MathDB
Playing with floor and ceiling

Source: 2023 Turkey Junior National Olympiad P4

December 22, 2023
ceiling functionfloor functionalgebra

Problem Statement

Let x1,x2,,x31x_1,x_2,\dots,x_{31} be real numbers. Then find the maximum value can i,j=1,2,,31,  ijxixj30(i=1,2,,31xi2)\sum_{i,j=1,2,\dots,31, \; i\neq j}{\lceil x_ix_j \rceil }-30\left(\sum_{i=1,2,\dots,31}{\lfloor x_i^2 \rfloor } \right) achieve. P.S.: For a real number xx we denote the smallest integer that does not subseed xx by x\lceil x \rceil and the biggest integer that does not exceed xx by x\lfloor x \rfloor. For example 2.7=3\lceil 2.7 \rceil=3, 2.7=2\lfloor 2.7 \rfloor=2 and 4=4=4\lfloor 4 \rfloor=\lceil 4 \rceil=4