MathDB
Period functiona and smallest period

Source: China TST 2000, problem 5

May 22, 2005
functionalgebra unsolvedalgebra

Problem Statement

a.) Let a,ba,b be real numbers. Define sequence xkx_k and yky_k such that x_0 = 1, y_0 = 0, x_{k+1} = a \cdot x_k - b \cdot y_l,   y_{k+1} = x_k - a \cdot y_k \text{ for } k = 0,1,2, \ldots Prove that xk=l=0[k/2](1)lak2l(a2+b)lλk,lx_k = \sum^{[k/2]}_{l=0} (-1)^l \cdot a^{k - 2 \cdot l} \cdot \left(a^2 + b \right)^l \cdot \lambda_{k,l} where λk,l=m=l[k/2](k2m)(ml)\lambda_{k,l} = \sum^{[k/2]}_{m=l} \binom{k}{2 \cdot m} \cdot \binom{m}{l} b.) Let uk=l=0[k/2]λk,lu_k = \sum^{[k/2]}_{l=0} \lambda_{k,l} . For positive integer m,m, denote the remainder of uku_k divided by 2m2^m as zm,kz_{m,k}. Prove that zm,k,z_{m,k}, k=0,1,2,k = 0,1,2, \ldots is a periodic function, and find the smallest period.