MathDB
IMC 1994 D2 P3

Source:

March 6, 2017
IMCreal analysisfunctioncalculusderivative

Problem Statement

Let ff be a real-valued function with n+1n+1 derivatives at each point of R\mathbb R. Show that for each pair of real numbers aa, bb, a<ba<b, such that ln(f(b)+f(b)++f(n)(b)f(a)+f(a)++f(n)(a))=ba\ln\left( \frac{f(b)+f'(b)+\cdots + f^{(n)} (b)}{f(a)+f'(a)+\cdots + f^{(n)}(a)}\right)=b-a there is a number cc in the open interval (a,b)(a,b) for which f(n+1)(c)=f(c)f^{(n+1)}(c)=f(c)