MathDB
P18 [Number Theory] - Turkish NMO 1st Round - 2013

Source:

April 17, 2013
modular arithmetic

Problem Statement

What is remainder when the sum (20131)+2013(20133)+20132(20135)++20131006(20132013)\binom{2013}{1}+2013\binom{2013}{3} + 2013^2\binom{2013}{5} + \dots + 2013^{1006}\binom{2013}{2013} is divided by 4141?
<spanclass=latexbold>(A)</span> 20<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 7<spanclass=latexbold>(D)</span> 1<spanclass=latexbold>(E)</span> None <span class='latex-bold'>(A)</span>\ 20 \qquad<span class='latex-bold'>(B)</span>\ 14 \qquad<span class='latex-bold'>(C)</span>\ 7 \qquad<span class='latex-bold'>(D)</span>\ 1 \qquad<span class='latex-bold'>(E)</span>\ \text{None}