MathDB
sum equals zero

Source: IMC 2002 day 1 problem 3

October 7, 2005
inductionalgebra proposedalgebra

Problem Statement

Let nn be a positive integer and let ak=1(nk),bk=2kn, (k=1..n)a_k = \dfrac{1}{\binom{n}{k}}, b_k = 2^{k-n},\ (k=1..n). Show that k=1nakbkk=0\sum_{k=1}^n \dfrac{a_k-b_k}{k} = 0.