MathDB
Putnam 1940 A7

Source: Putnam 1940

February 22, 2022
PutnamConvergence

Problem Statement

If i=1ui2\sum_{i=1}^{\infty} u_{i}^{2} and i=1vi2\sum_{i=1}^{\infty} v_{i}^{2} are convergent series of real numbers, prove that i=1(uivi)p\sum_{i=1}^{\infty}(u_{i}-v_{i})^{p} is convergent, where p2p\geq 2 is an integer.