MathDB
Vieta Theorem

Source: 2004 National High School Mathematics League, Exam One, Problem 15

March 18, 2020
function

Problem Statement

α,β\alpha,\beta are two different solutions to the equation 4x24tx+1=0(tR)4x^2-4tx+1=0(t\in\mathbb{R}), the domain of definition of the function f(x)=2xtx2+1f(x)=\frac{2x-t}{x^2+1} is <aclass=latexhyperlinkhref=α<β>α,β</a><a class='latex-hyperlink' href='\alpha<\beta'>\alpha,\beta</a>. (a) Find g(t)=maxf(x)minf(x)g(t)=\max f(x)-\min f(x). (b) Prove: for ui(0,π2)(i=1,2,3)u_i\in\left(0,\frac{\pi}{2}\right)(i=1,2,3), if sinu1+sinu2+sinu3=1\sin u_1+\sin u_2+\sin u_3=1, then 1g(tanu1)+1g(tanu2)+1g(tanu3)<346\frac{1}{g(\tan u_1)}+\frac{1}{g(\tan u_2)}+\frac{1}{g(\tan u_3)}<\frac{3}{4}\sqrt6.