Source: 2004 National High School Mathematics League, Exam One, Problem 15
March 18, 2020
function
Problem Statement
α,β are two different solutions to the equation 4x2−4tx+1=0(t∈R), the domain of definition of the function f(x)=x2+12x−t is <aclass=′latex−hyperlink′href=′α<β′>α,β</a>.
(a) Find g(t)=maxf(x)−minf(x).
(b) Prove: for ui∈(0,2π)(i=1,2,3), if sinu1+sinu2+sinu3=1, then g(tanu1)1+g(tanu2)1+g(tanu3)1<436.