MathDB
functional eq from positive rationals

Source:

March 5, 2007
functioninductionalgebra unsolvedalgebra

Problem Statement

Find all functions f:Q+Rf: Q^{+}\rightarrow R such that f(x)+f(y)+2xyf(xy)=f(xy)f(x+y)f(x)+f(y)+2xyf(xy)=\frac{f(xy)}{f(x+y)} for all x,yQ+x,y\in Q^{+}