MathDB
IMO ShortList 2008, Algebra problem 6

Source: IMO ShortList 2008, Algebra problem 6

July 9, 2009
functionalgebrafunctional equationrangeIMO Shortlist

Problem Statement

Let f:RN f: \mathbb{R}\to\mathbb{N} be a function which satisfies f\left(x \plus{} \dfrac{1}{f(y)}\right) \equal{} f\left(y \plus{} \dfrac{1}{f(x)}\right) for all x x, yR y\in\mathbb{R}. Prove that there is a positive integer which is not a value of f f.
Proposed by Žymantas Darbėnas (Zymantas Darbenas), Lithuania