MathDB
\sqrt{\sum (x_j^2+y_j^2)} <=1 / \sqrt{2} \sum \sqrt{x_j^2+y_j^2}.

Source: Polish MO Recond Round 1981 p1

September 9, 2024
algebrainequalities

Problem Statement

Prove that for any real numbers x1,x2,,x1981 x_1, x_2, \ldots, x_{1981} , y1,y2,,y1981 y_1, y_2, \ldots, y_{1981} such that j=11981xj=0 \sum_{j=1}^{1981} x_j = 0 , j=11981yj=0 \sum_{j=1}^{1981} y_j = 0 the inequality occurs j=11981(xj2+yj2)12j=11981xj2+yj2. \sqrt{\sum_{j=1}^{1981} (x_j^2+y_j^2)} \leq \frac{1}{\sqrt{2}} \sum_{j=1}^{1981} \sqrt{x_j^2+y_j^2}.