MathDB
cyclic, abc=8

Source: APMO 2005 Problem 2

March 23, 2005
inequalitiesalgebrainequalities proposedAPMO

Problem Statement

Let a,b,ca, b, c be positive real numbers such that abc=8abc=8. Prove that a2(1+a3)(1+b3)+b2(1+b3)(1+c3)+c2(1+c3)(1+a3)43 \frac{a^2}{\sqrt{(1+a^3)(1+b^3)}} +\frac{b^2}{\sqrt{(1+b^3)(1+c^3)}} +\frac{c^2}{\sqrt{(1+c^3)(1+a^3)}} \geq \frac{4}{3}