MathDB
infinite sums equal

Source: VJIMC 2011 1.3

June 1, 2021
Summation

Problem Statement

Prove that k=0xk1+x2k+2(1x2k+2)2=k=0(1)kxk(1xk+1)2\sum_{k=0}^\infty x^k\frac{1+x^{2k+2}}{(1-x^{2k+2})^2}=\sum_{k=0}^\infty(-1)^k\frac{x^k}{(1-x^{k+1})^2}for all x(1,1)x\in(-1,1).