MathDB
China South East Mathematical Olympiad 2016 Grade10 Q1

Source: China Nanchang

July 30, 2016
inequalities

Problem Statement

The sequence (an)(a_n) is defined by a1=1,a2=12a_1=1,a_2=\frac{1}{2},n(n+1)an+1an+nanan1=(n+1)2an+1an1(n2).n(n+1) a_{n+1}a_{n}+na_{n}a_{n-1}=(n+1)^2a_{n+1}a_{n-1}(n\ge 2). Prove that 2n+1<ann<1n(n3).\frac{2}{n+1}<\sqrt[n]{a_n}<\frac{1}{\sqrt{n}}(n\ge 3).