MathDB
Jbmo 2011 Problem 1

Source: Jbmo

June 21, 2011
inequalitiesinequalities unsolved

Problem Statement

Let a,b,ca,b,c be positive real numbers such that abc=1abc = 1. Prove that:
(a5+a4+a3+a2+a+1)8(a2+a+1)(b2+b+1)(c2+c+1)\displaystyle\prod(a^5+a^4+a^3+a^2+a+1)\geq 8(a^2+a+1)(b^2+b+1)(c^2+c+1)