MathDB
double integral inequality

Source: VJIMC 2014 2.4

May 21, 2021
inequalitiesintegrationcalculus

Problem Statement

Let 0<a<b0<a<b and let f:[a,b]Rf:[a,b]\to\mathbb R be a continuous function with abf(t)dt=0\int^b_af(t)dt=0. Show that ababf(x)f(y)ln(x+y)dxdy0.\int^b_a\int^b_af(x)f(y)\ln(x+y)dxdy\le0.