MathDB
B.Math 2008-Integration .

Source: 10+2

April 16, 2012
calculusintegrationfunctioncalculus computations

Problem Statement

Let f:RRf:\mathbb{R} \to \mathbb{R} be a continuous function . Suppose f(x)=1t0t(f(x+y)f(y))dyf(x)=\frac{1}{t} \int^t_0 (f(x+y)-f(y))\,dy xR\forall x\in \mathbb{R} and all t>0t>0 . Then show that there exists a constant cc such that f(x)=cx xf(x)=cx\ \forall x