MathDB
Problems
Contests
International Contests
IberoAmerican
1989 IberoAmerican
2
Trigonometric inequality for non-obtuse angles
Trigonometric inequality for non-obtuse angles
Source: IberoAmerican 1989 Q2
November 27, 2010
inequalities
trigonometry
inequalities proposed
Problem Statement
Let
x
,
y
,
z
x,y,z
x
,
y
,
z
be real numbers such that
0
≤
x
,
y
,
z
≤
π
2
0\le x,y,z\le\frac{\pi}{2}
0
≤
x
,
y
,
z
≤
2
π
. Prove the inequality
π
2
+
2
sin
x
cos
y
+
2
sin
y
cos
z
≥
sin
2
x
+
sin
2
y
+
sin
2
z
.
\frac{\pi}{2}+2\sin x\cos y+2\sin y\cos z\ge\sin 2x+\sin 2y+\sin 2z.
2
π
+
2
sin
x
cos
y
+
2
sin
y
cos
z
≥
sin
2
x
+
sin
2
y
+
sin
2
z
.
Back to Problems
View on AoPS