MathDB
KöMaL A. 723

Source: KöMaL A. 723

May 12, 2018
real analysiscollege contests

Problem Statement

Let f:RRf:\mathbb{R}\rightarrow \mathbb{R} be a continuous function such that the limit g(x)=limh0f(x+h)2f(x)+f(xh)h2g(x)=\lim_{h\rightarrow 0}{\frac{f(x+h)-2f(x)+f(x-h)}{h^2}} exists for all real xx. Prove that g(x)g(x) is constant if and only if f(x)f(x) is a polynomial function whose degree is at most 22.