MathDB
CIMA 2014 Problem 5

Source:

August 23, 2014
college contests

Problem Statement

Let A\mathbb{A} be the least subset of finite sequences of nonnegative integers that satisfies the following two properties:
-(0,0)A(0,0) \in \mathbb{A} - If (a1,,an)A(a_1,\ldots,a_n)\in \mathbb{A} then (a1,,ai2,ai1+1,1,ai+1,ai+1,,an)A(a_1,\ldots,a_{i-2},a_{i-1}+1,1,a_{i}+1,a_{i+1},\ldots,a_n)\in \mathbb{A} for all i{2,,n}i\in \{2,\ldots,n\}.
For each n2n\geq 2, let B(n)\mathbb{B}(n) be the set of sequences in A\mathbb{A} with nn terms. Find the number of elements of B\mathbb{B}.