MathDB
Mount inequality erupts in El Salvador

Source: 2023 Centroamerican and Caribbean Math Olympiad, P3

July 25, 2023
inequalities

Problem Statement

Let a, ba,\ b and cc be positive real numbers such that ab+bc+ca=1a b+b c+c a=1. Show that a3a2+3b2+3ab+2bc+b3b2+3c2+3bc+2ca+c3c2+3a2+3ca+2ab>16(a2+b2+c2)2. \frac{a^3}{a^2+3 b^2+3 a b+2 b c}+\frac{b^3}{b^2+3 c^2+3 b c+2 c a}+\frac{c^3}{c^2+3 a^2+3 c a+2 a b}>\frac{1}{6\left(a^2+b^2+c^2\right)^2} .