MathDB
x_1 + x_2 + ... + x_n = 0

Source: Turkey TST 1990 - P2

September 11, 2013
algebrapolynomialcalculusderivativeinequalities proposedinequalities

Problem Statement

For real numbers xix_i, the statement x1+x2+x3=0x1x2+x2x3+x3x10 x_1 + x_2 + x_3 = 0 \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 \leq 0 is always true. (Prove!) For which n4n\geq 4 integers, the statement x1+x2++xn=0x1x2+x2x3++xn1xn+xnx10x_1 + x_2 + \dots + x_n = 0 \Rightarrow x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \leq 0 is always true. Justify your answer.