MathDB
Putnam 1946 A2

Source: Putnam 1946

March 10, 2022
Putnamalgebrapolynomial

Problem Statement

If a(x),b(x),c(x)a(x), b(x), c(x) and d(x)d(x) are polynomials in x x, show that 1xa(x)c(x)  dx  1xb(x)d(x)  dx1xa(x)d(x)  dx  1xb(x)c(x)  dx \int_{1}^{x} a(x) c(x)\; dx\; \cdot \int_{1}^{x} b(x) d(x) \; dx - \int_{1}^{x} a(x) d(x)\; dx\; \cdot \int_{1}^{x} b(x) c(x)\; dx is divisible by (x1)4.(x-1)^4.