MathDB
Creating polynomial with property

Source: Iranian RMM TST 2021 Day3 P1

April 16, 2021
Integer Polynomialdividibilitynumber theory

Problem Statement

Let P(x)=x2016+2x2015+...+2017,Q(x)=1399x1398+...+2x+1P(x)=x^{2016}+2x^{2015}+...+2017,Q(x)=1399x^{1398}+...+2x+1. Prove that there are strictly increasing sequances ai,bi,i=1,...a_i,b_i, i=1,... of positive integers such that gcd(ai,ai+1)=1gcd(a_i,a_{i+1})=1 for each ii. Moreover, for each even ii, P(bi)ai,Q(bi)aiP(b_i) \nmid a_i, Q(b_i) | a_i and for each odd ii, P(bi)ai,Q(bi)aiP(b_i)|a_i,Q(b_i) \nmid a_i
Proposed by Shayan Talaei