MathDB
Putnam 1985 A6

Source:

August 5, 2019
Putnamalgebrapolynomial

Problem Statement

If p(x)=a0+a1x++amxmp(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} is a polynomial with real coefficients ai,a_{i}, then set Γ(p(x))=a02+a12++am2. \Gamma(p(x))=a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}^{2}. Let F(x)=3x2+7x+2.F(x)=3 x^{2}+7 x+2 . Find, with proof, a polynomial g(x)g(x) with real coefficients such that
(i) g(0)=1,g(0)=1, and (ii) Γ(f(x)n)=Γ(g(x)n)\Gamma\left(f(x)^{n}\right)=\Gamma\left(g(x)^{n}\right)
for every integer n1.n \geq 1.