MathDB
Today's calculation of Integral 822

Source: 2012 Iwate University entrance exam/Engineering

June 13, 2012
calculusintegrationlimitcalculus computations

Problem Statement

For n=0, 1, 2, n=0,\ 1,\ 2,\ \cdots, let
an=nn+1{xex(n+1)en1(xn)} dx,a_n=\int_{n}^{n+1} \{xe^{-x}-(n+1)e^{-n-1}(x-n)\}\ dx,
bn=nn+1{xex(n+1)en1} dx.b_n=\int_{n}^{n+1} \{xe^{-x}-(n+1)e^{-n-1}\}\ dx.
Find limnk=0n(akbk).\lim_{n\to\infty} \sum_{k=0}^n (a_k-b_k).