Define E⊆{f:[0,1]→R∣f is Riemann-integrable} such that E posseses the following properties:\\
<spanclass=′latex−bold′>(i)</span> If ∫01f(x)g(x)dx=0 for f∈E with ∫01f2(t)dt=0, then g∈E; \\
<spanclass=′latex−bold′>(ii)</span> There exists h∈E with ∫01h2(t)dt=0.\\
Prove that E={f:[0,1]→R∣f is Riemann-integrable}.
\\
(Andrei Bâra)