MathDB
Cute characterization for Riemann-integrable functions

Source: Science ON 2021 grade XII/3

March 16, 2021
integrabilityriemann integrabilityfunctionreal analysis

Problem Statement

Define E{f:[0,1]Rf is Riemann-integrable}E\subseteq \{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\} such that EE posseses the following properties:\\ <spanclass=latexbold>(i)</span><span class='latex-bold'>(i)</span> If 01f(x)g(x)dx=0\int_0^1 f(x)g(x) dx = 0 for fEf\in E with 01f2(t)dt0\int_0^1f^2(t)dt \neq 0, then gEg\in E; \\ <spanclass=latexbold>(ii)</span><span class='latex-bold'>(ii)</span> There exists hEh\in E with 01h2(t)dt0\int_0^1 h^2(t)dt\neq 0.\\ Prove that E={f:[0,1]Rf is Riemann-integrable}E=\{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}. \\ (Andrei Bâra)