MathDB
Problems
Contests
National and Regional Contests
Germany Contests
Bundeswettbewerb Mathematik
1987 Bundeswettbewerb Mathematik
4
Bundeswettbewerb Mathematik 1987 Problem 2.4
Bundeswettbewerb Mathematik 1987 Problem 2.4
Source: Bundeswettbewerb Mathematik 1987 Round 2
October 9, 2022
Inequality
equality
algebra
inequalities
Problem Statement
Let
1
<
k
≤
n
1<k\leq n
1
<
k
≤
n
be positive integers and
x
1
,
x
2
,
…
,
x
k
x_1 , x_2 , \ldots , x_k
x
1
,
x
2
,
…
,
x
k
be positive real numbers such that
x
1
⋅
x
2
⋅
…
⋅
x
k
=
x
1
+
x
2
+
…
+
x
k
.
x_1 \cdot x_2 \cdot \ldots \cdot x_k = x_1 + x_2 + \ldots +x_k.
x
1
⋅
x
2
⋅
…
⋅
x
k
=
x
1
+
x
2
+
…
+
x
k
.
a) Show that
x
1
n
−
1
+
x
2
n
−
1
+
…
+
x
k
n
−
1
≥
k
n
.
x_{1}^{n-1} +x_{2}^{n-1} + \ldots +x_{k}^{n-1} \geq kn.
x
1
n
−
1
+
x
2
n
−
1
+
…
+
x
k
n
−
1
≥
kn
.
b) Find all numbers
k
,
n
k,n
k
,
n
and
x
1
,
x
2
,
…
,
x
k
x_1, x_2 ,\ldots , x_k
x
1
,
x
2
,
…
,
x
k
for which equality holds.
Back to Problems
View on AoPS