MathDB
(16ac +a/c^2b+16c/a^2d+4/ac)(bd +b/256d^2c+d/b^2a+1/64bd) >=81/4

Source: Balkan MO Shortlist 2013 A2 BMO

March 8, 2020
inequalitiesalgebra

Problem Statement

Let a,b,ca, b, c and dd are positive real numbers so that abcd=14abcd = \frac14. Prove that holds (16ac+ac2b+16ca2d+4ac)(bd+b256d2c+db2a+164bd)814\left( 16ac +\frac{a}{c^2b}+\frac{16c}{a^2d}+\frac{4}{ac}\right)\left( bd +\frac{b}{256d^2c}+\frac{d}{b^2a}+\frac{1}{64bd}\right) \ge \frac{81}{4} When does the equality hold?