MathDB
Mediterranean M.C. 2010 Problem 3

Source:

July 12, 2010
geometrycircumcircleinradiusgeometric transformationreflectionincenterEuler

Problem Statement

Let A(BC),A'\in(BC), B(CA),C(AB)B'\in(CA),C'\in(AB) be the points of tangency of the excribed circles of triangle ABC\triangle ABC with the sides of ABC.\triangle ABC. Let RR' be the circumradius of triangle ABC.\triangle A'B'C'. Show that R=12r2R(2Rha)(2Rhb)(2Rhc) R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)} where as usual, RR is the circumradius of ABC,\triangle ABC, r is the inradius of ABC,\triangle ABC, and ha,hb,hch_{a},h_{b},h_{c} are the lengths of altitudes of ABC.\triangle ABC.