MathDB
Self-bounded Polynomial Inequalities

Source: Indonesian National Mathematical Olympiad 2024, Problem 7

August 29, 2024
algebrapolynomialinequalitiesIndonesiaIndonesia MO

Problem Statement

Suppose P(x)=xn+an1xn1++a1x+a0P(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_1x + a_0 where a0,a1,,an1a_0, a_1, \ldots, a_{n-1} are reals for n1n\geq 1 (monic nnth-degree polynomial with real coefficients). If the inequality 3(P(x)+P(y))P(x+y) 3(P(x)+P(y)) \geq P(x+y) holds for all reals x,yx,y, determine the minimum possible value of P(2024)P(2024).