MathDB
Turkish NMO First Round - 2012 Problem - 20 {Combinatorics}

Source:

July 1, 2012

Problem Statement

For each permutation (a1,a2,,a11)(a_1,a_2,\dots,a_{11}) of the numbers 1,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,11, we can determine at least kk of aia_is when we get (a1+a3,a2+a4,a3+a5,,a8+a10,a9+a11)(a_1+a_3, a_2+a_4,a_3+a_5,\dots,a_8+a_{10},a_9+a_{11}). kk can be at most ?
<spanclass=latexbold>(A)</span> 11<spanclass=latexbold>(B)</span> 6<spanclass=latexbold>(C)</span> 5<spanclass=latexbold>(D)</span> 2<spanclass=latexbold>(E)</span> None <span class='latex-bold'>(A)</span>\ 11 \qquad <span class='latex-bold'>(B)</span>\ 6 \qquad <span class='latex-bold'>(C)</span>\ 5 \qquad <span class='latex-bold'>(D)</span>\ 2 \qquad <span class='latex-bold'>(E)</span>\ \text{None}