MathDB
f:R→R; f(x+y)=f(x)+f(y)+1, Show that there exists g:R→R

Source: Turkey TST 2000 P6

March 12, 2011
functionlimitinequalitiesalgebra

Problem Statement

Suppose f:RRf:\mathbb{R} \to \mathbb{R} is a function such that f(x+y)f(x)f(y)1   for all  x,yR.|f(x+y)-f(x)-f(y)|\le 1\ \ \ \text{for all} \ \ x, y \in\mathbb R. Prove that there is a function g:RRg:\mathbb{R}\to\mathbb{R} such that f(x)g(x)1|f(x)-g(x)|\le 1 and g(x+y)=g(x)+g(y)g(x+y)=g(x)+g(y) for all x,yR.x,y \in\mathbb R.