MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran MO (3rd Round)
2020 Iran MO (3rd Round)
2
verry original of Iran to propose this.
verry original of Iran to propose this.
Source: Iranian Third Round 2020 Algebra exam Problem2
November 20, 2020
inequalities
Problem Statement
let
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a
1
,
a
2
,
...
,
a
n
,
b
1
,
b
2
,
.
.
.
,
b
n
b_1,b_2,...,b_n
b
1
,
b
2
,
...
,
b
n
,
c
1
,
c
2
,
.
.
.
,
c
n
c_1,c_2,...,c_n
c
1
,
c
2
,
...
,
c
n
be real numbers. prove that
∑
c
y
c
∑
i
∈
{
1
,
.
.
.
,
n
}
(
3
a
i
−
b
i
−
c
i
)
2
≥
∑
c
y
c
∑
i
∈
{
1
,
2
,
.
.
.
,
n
}
a
i
2
\sum_{cyc}{ \sqrt{\sum_{i \in \{1,...,n\} }{ (3a_i-b_i-c_i)^2}}} \ge \sum_{cyc}{\sqrt{\sum_{i \in \{1,2,...,n\}}{a_i^2}}}
cyc
∑
i
∈
{
1
,
...
,
n
}
∑
(
3
a
i
−
b
i
−
c
i
)
2
≥
cyc
∑
i
∈
{
1
,
2
,
...
,
n
}
∑
a
i
2
Back to Problems
View on AoPS