MathDB
Isn't a perfect square!

Source:

February 4, 2015
quadratics

Problem Statement

If aa , bb , cc , dd are integers and A=2(a2b+c)4+2(b2c+a)4+2(c2a+b)4A=2(a-2b+c)^4+2(b-2c+a)^4+2(c-2a+b)^4 , B=d(d+1)(d+2)(d+3)+1B=d(d+1)(d+2)(d+3)+1 , then prove that (A+1)2+B\left (\sqrt{A}+1 \right )^2 +B cannot be a perfect square.