MathDB
Putnam 1958 November B1

Source: Putnam 1958 November

July 19, 2022
Putnambinomial coefficientslimit

Problem Statement

Given bn=k=0n(nk)1,    n1,b_n = \sum_{k=0}^{n} \binom{n}{k}^{-1}, \;\; n\geq 1, prove that bn=n+12nbn1+1,    n2.b_n = \frac{n+1}{2n} b_{n-1} +1, \;\; n \geq 2. Hence, as a corollary, show limnbn=2. \lim_{n \to \infty} b_n =2.