MathDB
Inequality involving sines and cosines

Source: China TST 1998, problem 3

May 22, 2005
inequalitiestrigonometryinequalities unsolved

Problem Statement

For a fixed θ[0,π2]\theta \in \lbrack 0, \frac{\pi}{2} \rbrack, find the smallest aR+a \in \mathbb{R}^{+} which satisfies the following conditions: I. acosθ+asinθ>1\frac{\sqrt a}{\cos \theta} + \frac{\sqrt a}{\sin \theta} > 1. II. There exists x[1asinθ,acosθ]x \in \lbrack 1 - \frac{\sqrt a}{\sin \theta}, \frac{\sqrt a}{\cos \theta} \rbrack such that [(1x)sinθax2cos2θ]2+[xcosθa(1x)2sin2θ]2a\lbrack (1 - x)\sin \theta - \sqrt{a - x^2 \cos^{2} \theta} \rbrack^{2} + \lbrack x\cos \theta - \sqrt{a - (1 - x)^2 \sin^{2} \theta} \rbrack^{2} \leq a.