MathDB
China Team Selection Test 2015 TST 2 Day 1 Q2

Source: China Hangzhou

March 19, 2015
inequalitiesinequalities proposedChina TST

Problem Statement

Let a1,a2,a3,,ana_1,a_2,a_3, \cdots ,a_n be positive real numbers. For the integers n2n\ge 2, prove that(j=1n(k=1jak)1jj=1naj)1n+(i=1nai)1nj=1n(k=1jak)1jn+1n \left (\frac{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}{\sum_{j=1}^{n}a_j} \right )^{\frac{1}{n}}+\frac{\left (\prod_{i=1}^{n}a_i \right )^{\frac{1}{n}}}{\sum_{j=1}^{n} \left (\prod_{k=1}^{j}a_k \right )^{\frac{1}{j}}}\le \frac{n+1}{n}