MathDB
another functional inequality?

Source: 2023 ISL A4

July 17, 2024
algebraFunctional inequalityIMO ShortlistAZE IMO TST

Problem Statement

Let R>0\mathbb R_{>0} be the set of positive real numbers. Determine all functions f ⁣:R>0R>0f \colon \mathbb R_{>0} \to \mathbb R_{>0} such that x(f(x)+f(y))(f(f(x))+y)f(y)x \left(f(x) + f(y)\right) \geqslant \left(f(f(x)) + y\right) f(y) for every x,yR>0x, y \in \mathbb R_{>0}.