MathDB
Problems
Contests
International Contests
IMO Shortlist
2023 ISL
A4
another functional inequality?
another functional inequality?
Source: 2023 ISL A4
July 17, 2024
algebra
Functional inequality
IMO Shortlist
AZE IMO TST
Problem Statement
Let
R
>
0
\mathbb R_{>0}
R
>
0
be the set of positive real numbers. Determine all functions
f
:
R
>
0
→
R
>
0
f \colon \mathbb R_{>0} \to \mathbb R_{>0}
f
:
R
>
0
→
R
>
0
such that
x
(
f
(
x
)
+
f
(
y
)
)
⩾
(
f
(
f
(
x
)
)
+
y
)
f
(
y
)
x \left(f(x) + f(y)\right) \geqslant \left(f(f(x)) + y\right) f(y)
x
(
f
(
x
)
+
f
(
y
)
)
⩾
(
f
(
f
(
x
))
+
y
)
f
(
y
)
for every
x
,
y
∈
R
>
0
x, y \in \mathbb R_{>0}
x
,
y
∈
R
>
0
.
Back to Problems
View on AoPS