MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
1992 China Team Selection Test
2
sum equality implies product-sum inequality
sum equality implies product-sum inequality
Source: China TST 1992, problem 2
June 27, 2005
inequalities
algebra unsolved
algebra
Problem Statement
Let
n
≥
2
,
n
∈
N
,
n \geq 2, n \in \mathbb{N},
n
≥
2
,
n
∈
N
,
find the least positive real number
λ
\lambda
λ
such that for arbitrary
a
i
∈
R
a_i \in \mathbb{R}
a
i
∈
R
with
i
=
1
,
2
,
…
,
n
i = 1, 2, \ldots, n
i
=
1
,
2
,
…
,
n
and
b
i
∈
[
0
,
1
2
]
b_i \in \left[0, \frac{1}{2}\right]
b
i
∈
[
0
,
2
1
]
with
i
=
1
,
2
,
…
,
n
i = 1, 2, \ldots, n
i
=
1
,
2
,
…
,
n
, the following holds:
∑
i
=
1
n
a
i
=
∑
i
=
1
n
b
i
=
1
⇒
∏
i
=
1
n
a
i
≤
λ
∑
i
=
1
n
a
i
b
i
.
\sum^n_{i=1} a_i = \sum^n_{i=1} b_i = 1 \Rightarrow \prod^n_{i=1} a_i \leq \lambda \sum^n_{i=1} a_i b_i.
i
=
1
∑
n
a
i
=
i
=
1
∑
n
b
i
=
1
⇒
i
=
1
∏
n
a
i
≤
λ
i
=
1
∑
n
a
i
b
i
.
Back to Problems
View on AoPS