MathDB
sum equality implies product-sum inequality

Source: China TST 1992, problem 2

June 27, 2005
inequalitiesalgebra unsolvedalgebra

Problem Statement

Let n2,nN,n \geq 2, n \in \mathbb{N}, find the least positive real number λ\lambda such that for arbitrary aiRa_i \in \mathbb{R} with i=1,2,,ni = 1, 2, \ldots, n and bi[0,12]b_i \in \left[0, \frac{1}{2}\right] with i=1,2,,ni = 1, 2, \ldots, n, the following holds: i=1nai=i=1nbi=1i=1naiλi=1naibi.\sum^n_{i=1} a_i = \sum^n_{i=1} b_i = 1 \Rightarrow \prod^n_{i=1} a_i \leq \lambda \sum^n_{i=1} a_i b_i.