MathDB
Triangle inequality

Source: APMO 1996

March 12, 2006
inequalities

Problem Statement

Let aa, bb, cc be the lengths of the sides of a triangle. Prove that a+bc+b+ca+c+aba+b+c \sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \leq \sqrt{a} + \sqrt{b} + \sqrt{c} and determine when equality occurs.