MathDB
Putnam 1972 A6

Source: Putnam 1972

February 17, 2022
Putnam

Problem Statement

Let f f be an integrable real-valued function on the closed interval [0,1] [0, 1] such that 01xmf(x)dx={0    for  m=0,1,,n1;1    for  m=n.\int_{0}^{1} x^{m}f(x) dx=\begin{cases} 0 \;\; \text{for}\; m=0,1,\ldots,n-1;\\ 1\;\; \text{for}\; m=n. \end{cases} Show that f(x)2n(n+1)|f(x)|\geq2^{n}(n+1) on a set of positive measure.