MathDB
Sum

Source: APMO 1997

March 17, 2006
inequalities

Problem Statement

Given: S=1+11+13+11+13+16++11+13+16++11993006 S = 1 + \frac{1}{1 + \frac{1}{3}} + \frac{1}{1 + \frac{1}{3} + \frac{1} {6}} + \cdots + \frac{1}{1 + \frac{1}{3} + \frac{1}{6} + \cdots + \frac{1} {1993006}} where the denominators contain partial sums of the sequence of reciprocals of triangular numbers (i.e. k=n(n+1)2k=\frac{n(n+1)}{2} for n=1n = 1, 22, \ldots,19961996). Prove that S>1001S>1001.