MathDB
Putnam 1992 B3

Source: Putnam 1992

July 18, 2022
PutnamgeometrySequencearea

Problem Statement

For any pair (x,y)(x,y) of real numbers, a sequence (an(x,y))(a_{n}(x,y)) is defined as follows: a0(x,y)=x,        an+1(x,y)=an(x,y)2+y22  forn0a_{0}(x,y)=x, \;\;\;\; a_{n+1}(x,y) =\frac{a_{n}(x,y)^{2} +y^2 }{2} \;\, \text{for}\, n\geq 0 Find the area of the region {(x,y)R2(an(x,y))converges}\{(x,y)\in \mathbb{R}^{2} \, |\, (a_{n}(x,y)) \,\, \text{converges} \}.