MathDB
CMI entrance 19#2

Source:

October 31, 2019
complex numbersDiophantine equationCMIalgebra

Problem Statement

(a)(a) Count the number of roots of ω\omega of the equation z20191=0z^{2019} - 1 = 0 over complex numbers that satisfy \begin{align*} \vert \omega + 1 \vert \geq \sqrt{2 + \sqrt{2}} \end{align*} (b)(b) Find all real numbers xx that satisfy following equation :: \begin{align*} \frac{ 8^x + 27^x }{ 12^x + 18^x } = \frac{7}{6} \end{align*}