MathDB
Inequality with 4n numbers

Source: 239 2019 S7

July 31, 2020
inequalitiesalgebra

Problem Statement

Given positive numbers a1,,ana_1, \ldots , a_n, b1,,bnb_1, \ldots , b_n, c1,,cnc_1, \ldots , c_n. Let mkm_k be the maximum of the products aibjcla_ib_jc_l over the sets (i,j,l)(i, j, l) for which max(i,j,l)=kmax(i, j, l) = k. Prove that (a1++an)(b1++bn)(c1++cn)n2(m1++mn).(a_1 + \ldots + a_n) (b_1 +\ldots + b_n) (c_1 +\ldots + c_n) \leq n^2 (m_1 + \ldots + m_n).